DM simplified model coupling scans Snowmass EF10

September 2, 2021

Andreas Albert, on behalf of the LOI authors

Snowmass LOI: Displaying dark matter constraints from colliders with varying simplified model parameters

Andreas Albert,¹ Antonio Boveia,² Oleg Brandt,³,* Eric Corrigan,⁴ Zeynep Demiragli,¹ Caterina Doglioni,⁴ Boyu Gao,² Ulrich Haisch,⁵,* Philip Harris,⁶,* Jeffrey Krupa,⁶ Greg Landsberg,⁻ Alexander Moreno,⁻ Katherine Pachal,⁶ Priscilla Pani,¹0,* Tim M. P. Tait,¹¹,* David Yu,⁻ Felix Yu,¹² Lian-Tao Wang¹³

Starting situation

DM interpretations often formulated in simplified models. Parameter space: mediator spin, coupling type, m_{med} , m_{dm} , g_{q} , g_{χ} , g_{l}

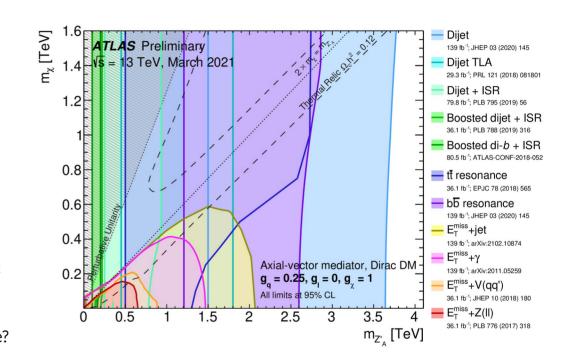
+ minimal width assumption

Steps for a typical result plot

- 1. Pick a mediator spin/type, e.g. axial-vector
- 2. Pick fixed couplings (g_a, g_x, g_l)
- 3. Draw exclusion in m_{med} - m_{dm} plane
- \rightarrow Focus on mass dimensions made sense in historical context of early Run-2: new \sqrt{s} =13 TeV, large gains in mass, etc

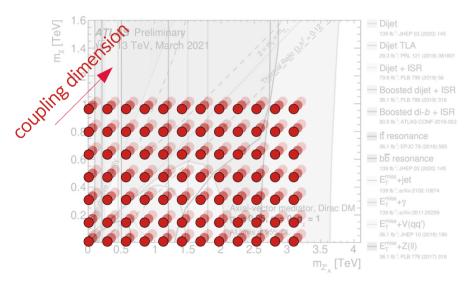
Information is lost here: What happens if the couplings change? Absolute exclusions & channel interplay change low-mass analysis improvements (systematics) can be exposed

→ Must explore coupling dimension systematically



Practical implications

Naive approach to cover parameter space: Multi dimensional sample production



Complexity grows quickly in both computing and human effort:(

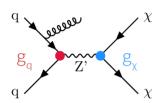
If not done in experiments, recasting effort comes on top

Alternative approach: rescaling of existing limits \rightarrow If we know $\mu(gq=0.25)$, can we e.g. obtain $\mu(gq=0.2)$?

Two parts to the equation:

Signal cross section vs kinematics

Simple example: Monojet



Total on-shell cross section × branching:

$$\sigma \times B \sim g_q^{\ 2} \times \Gamma_{med \rightarrow \chi\chi}(g_q,\,g_\chi) \ / \ \Gamma_{med \rightarrow \, anything}(g_q,\,g_\chi)$$

Signal strength limit:

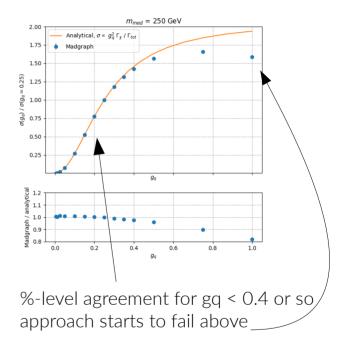
$$\mu \sim 1/(\sigma \times B)$$

 \rightarrow If you know μ for one point in (gq, gx) space, can rescale completely analytically to different points

Approach works well if width effects are small

 \rightarrow low couplings, sufficiently on shell (m_{DM}<2 × m_{med})

Comparison of anaytical scaling with actual XS from MG:



That's fine! Interesting phase space is @ g_q <0.25

 \rightarrow the limitation does not matter much in practice

Method already in use e.g. here

Scope & status

Scope:

- 1. Describe rescaling methods and evaluate their performance and limitations
- Provide ready-to-use formulas, validate against Madgraph, specify regions of validity
- Explore (semi-analytical) refinements: propagator & PDF reweighting can capture some width dependence
- 2. Cover different topologies: mono-X, dijet, dilepton)
- 3. Provide the code to do all of it

→ Goal is to lower the barrier of entry for the reader

Can I achieve my goal with rescaling? What level of refinement do I need?

Format: short DMWG whitepaper + python package

Status:

Initial work exists: paper draft, partial validation data / plots Work largely dormant during snowmass shutdown Now regrouping Backup

2 Sep 2021